Copied to
clipboard

G = C3×C42.7C22order 192 = 26·3

Direct product of C3 and C42.7C22

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C42.7C22, (C4×C8)⋊3C6, C4⋊C814C6, (C4×C24)⋊8C2, C8⋊C48C6, C4⋊C4.6C12, C22⋊C8.8C6, C6.47(C8○D4), C22⋊C4.3C12, C42.61(C2×C6), C23.11(C2×C12), C42⋊C2.8C6, C12.352(C4○D4), (C2×C24).327C22, (C4×C12).247C22, (C2×C12).989C23, C6.61(C42⋊C2), C22.46(C22×C12), (C22×C12).416C22, (C3×C4⋊C8)⋊33C2, C2.6(C3×C8○D4), (C3×C4⋊C4).18C4, (C2×C8).51(C2×C6), (C3×C8⋊C4)⋊22C2, C4.50(C3×C4○D4), (C2×C4).27(C2×C12), (C2×C12).200(C2×C4), (C3×C22⋊C8).17C2, (C3×C22⋊C4).10C4, (C22×C4).40(C2×C6), (C22×C6).22(C2×C4), (C2×C4).157(C22×C6), (C2×C6).239(C22×C4), C2.12(C3×C42⋊C2), (C3×C42⋊C2).22C2, SmallGroup(192,866)

Series: Derived Chief Lower central Upper central

C1C22 — C3×C42.7C22
C1C2C4C2×C4C2×C12C2×C24C3×C22⋊C8 — C3×C42.7C22
C1C22 — C3×C42.7C22
C1C2×C12 — C3×C42.7C22

Generators and relations for C3×C42.7C22
 G = < a,b,c,d,e | a3=b4=c4=e2=1, d2=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1c2, ebe=bc2, cd=dc, ce=ec, ede=b2c2d >

Subgroups: 130 in 96 conjugacy classes, 66 normal (26 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C2×C4, C23, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C24, C2×C12, C2×C12, C2×C12, C22×C6, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C42⋊C2, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C22×C12, C42.7C22, C4×C24, C3×C8⋊C4, C3×C22⋊C8, C3×C4⋊C8, C3×C42⋊C2, C3×C42.7C22
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C12, C2×C6, C22×C4, C4○D4, C2×C12, C22×C6, C42⋊C2, C8○D4, C22×C12, C3×C4○D4, C42.7C22, C3×C42⋊C2, C3×C8○D4, C3×C42.7C22

Smallest permutation representation of C3×C42.7C22
On 96 points
Generators in S96
(1 71 23)(2 72 24)(3 65 17)(4 66 18)(5 67 19)(6 68 20)(7 69 21)(8 70 22)(9 58 26)(10 59 27)(11 60 28)(12 61 29)(13 62 30)(14 63 31)(15 64 32)(16 57 25)(33 73 81)(34 74 82)(35 75 83)(36 76 84)(37 77 85)(38 78 86)(39 79 87)(40 80 88)(41 53 89)(42 54 90)(43 55 91)(44 56 92)(45 49 93)(46 50 94)(47 51 95)(48 52 96)
(1 47 75 27)(2 32 76 44)(3 41 77 29)(4 26 78 46)(5 43 79 31)(6 28 80 48)(7 45 73 25)(8 30 74 42)(9 86 50 66)(10 71 51 83)(11 88 52 68)(12 65 53 85)(13 82 54 70)(14 67 55 87)(15 84 56 72)(16 69 49 81)(17 89 37 61)(18 58 38 94)(19 91 39 63)(20 60 40 96)(21 93 33 57)(22 62 34 90)(23 95 35 59)(24 64 36 92)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)(65 67 69 71)(66 68 70 72)(73 75 77 79)(74 76 78 80)(81 83 85 87)(82 84 86 88)(89 91 93 95)(90 92 94 96)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(2 80)(4 74)(6 76)(8 78)(9 50)(10 14)(11 52)(12 16)(13 54)(15 56)(18 34)(20 36)(22 38)(24 40)(25 29)(26 46)(27 31)(28 48)(30 42)(32 44)(41 45)(43 47)(49 53)(51 55)(57 61)(58 94)(59 63)(60 96)(62 90)(64 92)(66 82)(68 84)(70 86)(72 88)(89 93)(91 95)

G:=sub<Sym(96)| (1,71,23)(2,72,24)(3,65,17)(4,66,18)(5,67,19)(6,68,20)(7,69,21)(8,70,22)(9,58,26)(10,59,27)(11,60,28)(12,61,29)(13,62,30)(14,63,31)(15,64,32)(16,57,25)(33,73,81)(34,74,82)(35,75,83)(36,76,84)(37,77,85)(38,78,86)(39,79,87)(40,80,88)(41,53,89)(42,54,90)(43,55,91)(44,56,92)(45,49,93)(46,50,94)(47,51,95)(48,52,96), (1,47,75,27)(2,32,76,44)(3,41,77,29)(4,26,78,46)(5,43,79,31)(6,28,80,48)(7,45,73,25)(8,30,74,42)(9,86,50,66)(10,71,51,83)(11,88,52,68)(12,65,53,85)(13,82,54,70)(14,67,55,87)(15,84,56,72)(16,69,49,81)(17,89,37,61)(18,58,38,94)(19,91,39,63)(20,60,40,96)(21,93,33,57)(22,62,34,90)(23,95,35,59)(24,64,36,92), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,80)(4,74)(6,76)(8,78)(9,50)(10,14)(11,52)(12,16)(13,54)(15,56)(18,34)(20,36)(22,38)(24,40)(25,29)(26,46)(27,31)(28,48)(30,42)(32,44)(41,45)(43,47)(49,53)(51,55)(57,61)(58,94)(59,63)(60,96)(62,90)(64,92)(66,82)(68,84)(70,86)(72,88)(89,93)(91,95)>;

G:=Group( (1,71,23)(2,72,24)(3,65,17)(4,66,18)(5,67,19)(6,68,20)(7,69,21)(8,70,22)(9,58,26)(10,59,27)(11,60,28)(12,61,29)(13,62,30)(14,63,31)(15,64,32)(16,57,25)(33,73,81)(34,74,82)(35,75,83)(36,76,84)(37,77,85)(38,78,86)(39,79,87)(40,80,88)(41,53,89)(42,54,90)(43,55,91)(44,56,92)(45,49,93)(46,50,94)(47,51,95)(48,52,96), (1,47,75,27)(2,32,76,44)(3,41,77,29)(4,26,78,46)(5,43,79,31)(6,28,80,48)(7,45,73,25)(8,30,74,42)(9,86,50,66)(10,71,51,83)(11,88,52,68)(12,65,53,85)(13,82,54,70)(14,67,55,87)(15,84,56,72)(16,69,49,81)(17,89,37,61)(18,58,38,94)(19,91,39,63)(20,60,40,96)(21,93,33,57)(22,62,34,90)(23,95,35,59)(24,64,36,92), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,80)(4,74)(6,76)(8,78)(9,50)(10,14)(11,52)(12,16)(13,54)(15,56)(18,34)(20,36)(22,38)(24,40)(25,29)(26,46)(27,31)(28,48)(30,42)(32,44)(41,45)(43,47)(49,53)(51,55)(57,61)(58,94)(59,63)(60,96)(62,90)(64,92)(66,82)(68,84)(70,86)(72,88)(89,93)(91,95) );

G=PermutationGroup([[(1,71,23),(2,72,24),(3,65,17),(4,66,18),(5,67,19),(6,68,20),(7,69,21),(8,70,22),(9,58,26),(10,59,27),(11,60,28),(12,61,29),(13,62,30),(14,63,31),(15,64,32),(16,57,25),(33,73,81),(34,74,82),(35,75,83),(36,76,84),(37,77,85),(38,78,86),(39,79,87),(40,80,88),(41,53,89),(42,54,90),(43,55,91),(44,56,92),(45,49,93),(46,50,94),(47,51,95),(48,52,96)], [(1,47,75,27),(2,32,76,44),(3,41,77,29),(4,26,78,46),(5,43,79,31),(6,28,80,48),(7,45,73,25),(8,30,74,42),(9,86,50,66),(10,71,51,83),(11,88,52,68),(12,65,53,85),(13,82,54,70),(14,67,55,87),(15,84,56,72),(16,69,49,81),(17,89,37,61),(18,58,38,94),(19,91,39,63),(20,60,40,96),(21,93,33,57),(22,62,34,90),(23,95,35,59),(24,64,36,92)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64),(65,67,69,71),(66,68,70,72),(73,75,77,79),(74,76,78,80),(81,83,85,87),(82,84,86,88),(89,91,93,95),(90,92,94,96)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(2,80),(4,74),(6,76),(8,78),(9,50),(10,14),(11,52),(12,16),(13,54),(15,56),(18,34),(20,36),(22,38),(24,40),(25,29),(26,46),(27,31),(28,48),(30,42),(32,44),(41,45),(43,47),(49,53),(51,55),(57,61),(58,94),(59,63),(60,96),(62,90),(64,92),(66,82),(68,84),(70,86),(72,88),(89,93),(91,95)]])

84 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E4F4G4H4I4J4K6A···6F6G6H8A···8H8I8J8K8L12A···12H12I···12P12Q···12V24A···24P24Q···24X
order1222233444444444446···6668···8888812···1212···1212···1224···2424···24
size1111411111122224441···1442···244441···12···24···42···24···4

84 irreducible representations

dim11111111111111112222
type++++++
imageC1C2C2C2C2C2C3C4C4C6C6C6C6C6C12C12C4○D4C8○D4C3×C4○D4C3×C8○D4
kernelC3×C42.7C22C4×C24C3×C8⋊C4C3×C22⋊C8C3×C4⋊C8C3×C42⋊C2C42.7C22C3×C22⋊C4C3×C4⋊C4C4×C8C8⋊C4C22⋊C8C4⋊C8C42⋊C2C22⋊C4C4⋊C4C12C6C4C2
# reps111221244224428848816

Matrix representation of C3×C42.7C22 in GL4(𝔽73) generated by

64000
06400
0080
0008
,
1100
717200
00072
00720
,
27000
02700
00270
00027
,
63000
06300
00022
00510
,
1100
07200
0010
00072
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,8,0,0,0,0,8],[1,71,0,0,1,72,0,0,0,0,0,72,0,0,72,0],[27,0,0,0,0,27,0,0,0,0,27,0,0,0,0,27],[63,0,0,0,0,63,0,0,0,0,0,51,0,0,22,0],[1,0,0,0,1,72,0,0,0,0,1,0,0,0,0,72] >;

C3×C42.7C22 in GAP, Magma, Sage, TeX

C_3\times C_4^2._7C_2^2
% in TeX

G:=Group("C3xC4^2.7C2^2");
// GroupNames label

G:=SmallGroup(192,866);
// by ID

G=gap.SmallGroup(192,866);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,1059,142,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^4=e^2=1,d^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1*c^2,e*b*e=b*c^2,c*d=d*c,c*e=e*c,e*d*e=b^2*c^2*d>;
// generators/relations

׿
×
𝔽